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Abstract

We study representation of Boolean functions by formulas. We proved necessary and suffi-

cient condition of representation of Boolean functions by repetition-free formulas in the base

{∨, ·,−, 0, 1, x1(x2 ∨ x3) ∨ x3x4}.

Keywords: Boolean function, formula, base, repetition-free function, weak-

repetition function, almost elementary base.

1 Introduction

In this article we study realization of Boolean functions by repetition-free formulas

in the finite full set (base).

We preface the description of main results with the needed definitions and no-

tation. The definitions of all notions which are not given here can be found, for

example, in [1]. We use the following notation: variables are denoted by the sym-

bols x, y, z, u, v, maybe with subscripts; constants are denoted by the symbols σ,

σ1, . . . σn; the symbol x̃ denotes the tuple (x1, . . . , xn); |x̃| is the length of a tuple

x̃; rank f is the rank of a function f ; ρ(f) denotes the set of all essential variables
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of a function f ; δ(f) denotes the set of all fictitious variables of a function f ; PB

denotes the set of all repetition-free functions over a base B; SB denotes the set of

all weak-repetition functions over a base B;

xσ =





x, if σ = 1;

x̄, if σ = 0.

A formula Φ over a base B is called repetition-free if each variable occurs in Φ

at most once.

A Boolean function f is called repetition-free in the base B whenever there exists

a repetition-free formula Φ over B representing f . Otherwise, f has repetitions in

B.

The function obtained from f(x1, . . . , xn) by the substitution of a constant σ for

a variable xi is called the residual function and is denoted by fσ
xi
. This definition is

extended to a subset of variables by induction.

A variable xi of a function f is called fictitious if f0
xi

= f1
xi

and essential

otherwise.

The rank of a function f is the number of essential variables of f . By the rank

of a base is meant the maximum rank of the functions in the base.

We call

B0 = {∨, ·,−, 0, 1}

the elementary base, and every B0∪{f}, where f is a weak-repetition function in

B0, an almost elementary base.

In the article [2] Stetsenko found the almost elementary bases. We introduce
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notations for almost elementary bases:

B1,n = B0 ∪ {g1,n}, where g1,n = x1 · . . . · xn ∨ x̄1 · . . . · x̄n, n ≥ 2,

B2,n = B0 ∪ {g2,n}, where g2,n = x1(x2 ∨ . . . ∨ xn) ∨ x2 · . . . · xn, n ≥ 3,

B3,n = B0 ∪ {g3,n}, where g3,n = x1(x2 ∨ x3 · . . . · xn) ∨ x2 · x̄3 · . . . · x̄n, n ≥ 3,

B4 = B0 ∪ {g4}, where g4 = x1(x2 ∨ x3) ∨ x3x4,

B5 = B0 ∪ {g5}, where g5 = x1(x2 ∨ x3x4) ∨ x5(x3 ∨ x2x4).

The articles [3 – 11] yield necessary and sufficient conditions for the repetition free-

ness of Boolean functions in B0, B1,2, B3,3, B5, B1,n, where n is odd, B2,n, where

n ≥ 3. Here we offer a criterion for the repetition freeness of Boolean functions in

B4.

Say that two functions f and g are related by ¹, and write f ¹ g, whenever

f(σ̃) ≤ g(σ̃) for every tuple σ̃. A function f is called generalized monotone in x

whenever either f0
x ¹ f1

x or f0
x º f1

x . If f is a generalized monotone function in x

then we put f ∈ Mx for brevity.

Two functions f and g are of the same generalized type whenever

f(x1, . . . , xn) = gσ(xσ1
i1

, . . . , xσn
in

),

where (i1, . . . , in) is some permutation of the integers from 1 to n. It is obvious that

the relation of being of the same generalized type is an equivalence on the set of all

Boolean functions.

The derivative of a function f(x1, . . . , xn) with respect to xi is the function

f ′xi
= f0

xi
⊕ f1

xi
.

The concept of the derivative of a function with respect to a variable extends

inductively to the sets of variables as follows:

∂f

∂xi1 . . . ∂xis

=
∂

(
∂f

∂xi1 . . . ∂xis−1

)

∂xis

.
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A function is called odd if the number of tuples at which it assumes 1 is odd, and

even otherwise.

A set P of Boolean functions that contains the identity function is called hereditary

whenever given f ∈ P every residual function fσ
x belongs to P .

A set P of Boolean functions is called invariant whenever given two functions

f(ũ, y), g(ṽ) ∈ P with ũ ∩ ṽ = ∅, we have f(ũ, g(ṽ)) ∈ P .

2 Auxiliary Statements

In proving the main result we will use only the following statements:

Proposition 1 ([5]). A set P of Boolean functions is hereditary and invariant if and

only if P is the set of all repetition-free functions over some base B.

Corollary 1. Given a hereditary invariant set P of Boolean functions and a base B

with B ⊆ P and SB ∩ P = ∅, it follows that PB = P .

Therefore, in order to prove that some set P of Boolean functions coincides with

the set of all repetition-free functions over some base B it suffices to show that P

enjoys the properties of heredity and invariance, and verify that all weak-repetition

functions in B do not belong to P .

Proposition 2 ([12]). The following system of Boolean functions is a complete sys-

tem of representatives of the equivalence classes with respect to the relation of being

of the same generalized type for weak-repetition Boolean functions in the almost ele-
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mentary base B4:

x1(x2 ∨ x3x4) ∨ x5(x3 ∨ x2x4);

x1(x2 ∨ . . . ∨ xn) ∨ x2 · . . . · xn, n ≥ 3;

x1(x2 ∨ x3 · . . . · xn) ∨ x2 · x̄3 · . . . · x̄n, n ≥ 3;

x1 · . . . · xn ∨ x̄1 · . . . · x̄n, n ≥ 2;

x̄1g(x2, . . . , x5) ∨ x1g(x3, x2, x5, x4);

x̄1g(x2, . . . , x5) ∨ x1x3x5(x2 ∨ x4);

x̄1g(x2, . . . , x5) ∨ x1(x2x3 ∨ x4x5);

x̄1g(x2, . . . , x5) ∨ x1x3(x2 ∨ x4x5);

x̄1x2g(x3, . . . , x6) ∨ x1g(x2x3, x4, x5, x6).

3 The Main Theorem

A function f will be called 4-soft whenever either rank f < 2, or for every x ∈ ρ(f)

we have f ∈ Mx and one of the following conditions holds:

1. for some constant σ conditions δ(f)  δ(fσ
x ) and δ(f) = δ(f σ̄

x ) are true, and if

δ(fσ
x ) \ δ(f) = {y}, then δ(f) = δ(f0

y ) = δ(f1
y ) is not true,

2. δ(f)  δ(f0
x), δ(f)  δ(f1

x) and there exists y ∈ ρ(f ′x) such that δ(f ′x)  

δ((f ′x)′y),

3. δ(f)  δ(f ′x).

A function f will be called hereditarily 4-soft if f and all its residual functions

are 4-soft.

The following theorem yields a repetition-free criterion.

Theorem 1. A function f is repetition-free in the base B4 if and only if f is heredi-

tarily 4-soft.
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Proof. In order to prove the theorem we use the method that is based on Proposition

1. Denote by P the set of all hereditarily 4-soft functions. The set P is hereditary

by definition, and so let us demonstrate the invariance of P .

Suppose that f(ũ, ṽ) = g(ũ, h(ṽ)) with g(ũ, y), h(ṽ) ∈ P . If ũ = ∅ or |ṽ| = 1 then

f is of the same generalized type as g or h; thus, f is hereditarily 4-soft. Assume

henceforth that ũ 6= ∅ and |ṽ| > 1.

1. Let x ∈ ṽ. If for some constant σ conditions δ(h) ( δ(hσ
x) and δ(h) = δ(hσ̄

x)

are true, then δ(f) ( δ(fσ
x ) and δ(f) = δ(f σ̄

x ) holds. And if δ(fσ
x )\δ(f) = {y},

then δ(hσ
x) \ δ(h) = {y}, and δ(f) = δ(f0

y ) = δ(f1
y ) is not true, since δ(h) =

δ(h0
y) = δ(h1

y) is not true.

Let δ(h) ( δ(h0
x) and δ(h) ( δ(h1

x). There exists a variable z such that

δ(h′x) ( δ((h′x)′z), therefore δ(f ′x) ( δ((f ′x)′z).

Let δ(h) ( δ(h′x). Since f ′x = g′y(ũ, y) · h′x(ṽ) is true, the strict inclusion

δ(f) ( δ(f ′x) holds.

2. Let x ∈ ũ. If for some constant σ conditions δ(g) ( δ(gσ
x) and δ(g) = δ(gσ̄

x)

are true, then δ(f) ( δ(fσ
x ) and δ(f) = δ(f σ̄

x ) holds. And if δ(gσ
x) \ δ(g) = {y}

and δ(fσ
x ) \ δ(f) = {y}, then δ(f) = δ(f0

y ) = δ(f1
y ) is not true, since δ(g) =

δ(g0
y) = δ(g1

y) is not true.

Let δ(g) ( δ(g0
x) and δ(g) ( δ(g1

x). If there exists a variable z, not equal to y and

such that δ(g′x) ( δ((g′x)′z), then δ(f ′x) ( δ((f ′x)′z). Otherwise we choose arbitrarily

a variable z1 ∈ ṽ and consider (f ′x)′z1
= (g′x)′y(ũ, y) · h′z1

(ṽ). Since δ(g′x) ( δ((g′x)′y) is

true, then δ(g′x) ( δ((g′x)′z1
) holds.

Let δ(g) ( δ(g′x). It is easily seen that δ(f) ( δ(f ′x).

In order to prove that f ∈ Mx for every variable x, we argue by contradiction.

Suppose that f 6∈ Mx; i. e., f0
x 6¹ f1

x and f0
x 6º f1

x .
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Let x ∈ ũ. Then there are tuples of constants σ̃1, σ̃2, σ̃3, τ̃1, τ̃2, τ̃3 such that

|σ̃i| = |τ̃i| for every i and

g(σ̃1, 0, σ̃2, h(σ̃3)) < g(σ̃1, 1, σ̃2, h(σ̃3)),

g(τ̃1, 0, τ̃2, h(τ̃3)) > g(τ̃1, 1, τ̃2, h(τ̃3)).

Let h(σ̃3) = γ, h(τ̃3) = δ, then

g(σ̃1, 0, σ̃2, γ) < g(σ̃1, 1, σ̃2, γ),

g(τ̃1, 0, τ̃2, δ) > g(τ̃1, 1, τ̃2, δ).

Thus, g 6∈ Mx, and we obtain a contradiction.

Let x ∈ ṽ. Similarly, there are tuples of constants σ̃1, σ̃2, σ̃3, τ̃1, τ̃2, τ̃3 such that

|σ̃i| = |τ̃i| for every i and

g(σ̃1, h(σ̃2, 0, σ̃3)) < g(σ̃1, h(σ̃2, 1, σ̃3)),

g(τ̃1, h(τ̃2, 0, τ̃3)) > g(τ̃1, h(τ̃2, 1, τ̃3)).

Since h ∈ Mx, it follows that either

g(σ̃1, 0) < g(σ̃1, 1), g(τ̃1, 0) > g(τ̃1, 1),

or

g(σ̃1, 1) < g(σ̃1, 0), g(τ̃1, 1) > g(τ̃1, 0).

In both cases, we obtain a contradiction with the inclusion g ∈ Mx. Thus, we proved

that P is invariant.

Now for the hereditary invariant set P we can find a generating base. It is obvious

that B4 ⊆ P . Verify that all weak-repetition functions in B4 do not belong to P .

It suffices to restrict the argument to the functions in Proposition 2 since if the 4-

softness property fails to hold for some function then it fails for all functions of the

same generalized type either.
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(a) Let f = x1(x2 ∨ x3x4) ∨ x5(x3 ∨ x2x4). Then

f0
x4

= x1x2 ∨ x3x5, f
1
x4

= (x1 ∨ x5)(x2 ∨ x3), f ′x4
= x1x̄2x3x̄5 ∨ x̄1x2x̄3x5.

The functions f0
x4
, f1

x4
, f ′x4

are essential, thus f 6∈ P .

(b) Let f = x1(x2 ∨ . . . ∨ xn) ∨ x2 · . . . · xn, where n ≥ 3. Then

f0
x1

= x2 · . . . · xn, f1
x1

= x2 ∨ . . . ∨ xn, f ′x1
= x2 · . . . · xn ∨ x̄2 · . . . · x̄n.

The functions f0
x1
, f1

x1
, f ′x1

are essential, thus f 6∈ P .

(c) Let f = x1(x2 ∨ x3 · . . . · xn)∨ x2x̄3 · . . . · x̄n, where n ≥ 3. The function f 6∈ P ,

since f 6∈ Mx3 .

(d) Let f = x1 · . . . · xn ∨ x̄1 · . . . · x̄n, where n ≥ 2. In the same way as in case (c),

the function f 6∈ P , since f 6∈ Mx1 .

(e) Let f = x̄1g(x2, . . . , x5) ∨ x1g(x3, x2, x5, x4). Then

f0
x1

= g(x2, . . . , x5), f1
x1

= g(x3, x2, x5, x4), f ′x1
= x2x̄3x4x̄5 ⊕ x̄2x3x̄4x5.

The situation is similar to case (b).

(f) Let f = x̄1g(x2, . . . , x5) ∨ x1x3x5(x2 ∨ x4). Then

f0
x1

= g(x2, . . . , x5), f1
x1

= x3x5(x2 ∨ x4),

f ′x1
= x2x3x4x̄5 ∨ x2x3x̄4x̄5 ∨ x2x̄3x4x5 ∨ x2x̄3x4x̄5 ∨ x̄2x̄3x4x5.

The function f ′x1
is odd, that is, it is essential. The situation is similar to case

(b).
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(g) Let f = x̄1g(x2, . . . , x5) ∨ x1(x2x3 ∨ x4x5). Then

f0
x1

= g(x2, . . . , x5), f1
x1

= x2x3 ∨ x4x5, f
′
x1

= x2x̄3x4x̄5.

The situation is similar to case (b).

(h) Let f = x̄1g(x2, . . . , x5) ∨ x1x3(x2 ∨ x4x5). Then

f0
x1

= g(x2, . . . , x5), f1
x1

= x3(x2∨x4x5), f ′x1
= x2x̄3x4x5∨x2x̄3x4x̄5∨x̄2x̄3x4x5.

The situation is similar to case (f).

(i) Let f = x̄1x2g(x3, . . . , x6) ∨ x1g(x2x3, x4, x5, x6). Then

f0
x6

= x2x3x4 ∨ x2x3x5, f
1
x6

= g(x2, x3x4, x5, x1).

Hence it follows that δ(f)  δ(f0
x6

), δ(f) = δ(f1
x6

), δ(f0
x6

) \ δ(f) = {x1} and

δ(f) = δ(f0
x1

) = δ(f1
x1

), that it is not true.

Thus, SB4 ∩ P = ∅ and B4 ⊆ P . Theorem is proved.
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